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A straightforward generalization of Linderberg's equation-of-motion-based 
formula for the matrix elements of the linear momentum operator is proposed. 
The essential feature of the modification is the abandonment of the zero 
differential overlap (ZDO) approximation for the electric transition integrals. 
It is expected that this new formula gives better transition moments and, 
consequently, better optical rotatory strength values. The results of this 
modification are analysed numerically for the rotatory strengths of the twisted 
hydrogen peroxide and for the 1,6-diazaspiro[4,4]-nonane-2,7-dione, 
CTH10N202, molecule, using a CNDO Hamiltonian. For both systems a 
definitive improvement of calculated rotatory strengths resulted. 
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1. Introduction 

The basic characteristics of the optical rotatory dispersion (ORD) and circular 
dichroism (CD) spectra of molecules are the Ri  rotatory strengths belonging to the 
0 ~ i transition of the molecule [1]: 

eZh 
R7 = - - -  (01Y ~kli)(il ~ ~k x grkl0) (1) 

2 m c  k k 
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(dipole length form) 

e2h 3 
R v = 2mZcwi (01 ~k Ckli>(il ~k Pk x~kl0) (2) 

(dipole velocity form) 

where wl = (El -E0)  1 the excitation energy, li> is the ith excited state, i, ~r are the 
one-electron position and gradient operators, respectively. The accurate quantum 
chemical evaluation of Ri is not trivial due to the observed strong dependence on 
molecular geometry [2], size of the configuration interaction (CI) [3, 4], and on the 
position and gradient matrix elements over atomic orbitals. 

According to the off-diagonal hypervirial theorem [5, 6] the (1) and (2) rotatory 
strengths are identical if the Ii> states are exact eigenstates of the model Hamil- 
tonian and if the ~ and f operators fulfil the ~r = [~,/-~r] Heisenberg equation of 
motion [7]. 

An approximate wave function may violate the off-diagonal hypervirial theorem, 
therefore in this case the R v and R r values for a transition are not automatically 
identical. However, both of these formulae have their own significance: the R v 
rotatory strengths are origin independent [8], and the R r values fulfil the Y.i R 7 = 0 
sum rule [6, 9, 10]. Hence the equivalence of the dipole velocity and dipole length 
forms is very important in quantum chemical calculation of R. 

The calculation of the rotatory strength consists in the evaluation of the 1) 
Hartree-Fock linear combination of atomic orbitals (LCAO) and CI coefficients 
as well as 2) the matrix elements of position, linear and angular momentum 
operators over atomic orbitals. In this paper we restrict the discussion to the latter 
question. For this two different procedures have been proposed. The first consists 
of integration over (e.g. Slater-type) atomic orbitals [11, 12]. The second one is 
the Linderberg approximation, which was used in connection with the Pariser- 
Parr-Pople (PPP) [13, 14] and complete neglect of differential overlap (CNDO) 
[15] models [16, 17]. Within the second scheme the ZDO approximation was 
applied for r~. : 

r~,~ --- (/zlr ~ ra (3) 

/x on atom a; ra is the position vector of atom a in the molecular frame of 
reference. The matrix elements of the gradient operator are calculated by the (4b) 
Linderberg equation [17], which can be obtained by substituting Eq. (3) into the 
equation of motion (4a): 

~.. = [~,/-~r].. (4a) 

~ , ,  = (ra - rb)fl~,, (4b) 

on atom b, the f l , , ' s  are the resonance integrals. This formula gives automatic- 
ally zero gradient matrix elements between orbitals on the same atom. This 

1 From here in all formulae atomic units are used. 
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method differs from the first one (analytic integration) also in its results: 1) 
because it enforces directly the Heisenberg equation of motion for ~; 2) because of 
the ZDO assumption in Eq. (3). It may be noted that the equation of motion is 
violated by the Hartree-Fock and by the finite basis set approximations if the 
analytic procedure is applied [9, 18]. 

The use of Eq. (4) is justified because, according to quantum mechanical formal- 
ism, the matrix elements of the ~ and the V operators are not independent. 
Therefore one is free to choose the matrix elements of ~ e.g. by using formula (3), 
but then the matrix elements offf are already fixed by Eq. (4a) as a consequence of 
quantum mechanics. 

The Linderberg method was successfully used for the ordinary and magneto- 
optical calculations, in connection with CNDO wave functions in several cases 
[3, 19-26]. 2 

Eq. (3) is a rough approximation involving neglect of all one- and two-center 
electronic transition moment integrals (off-diagonal elements of r,~). However, it 
is well known that "omission of the atomic transition moment integrals makes it 
practically impossible to obtain realistic molecular ( . . . )  transition moments" [28]. 
Therefore Linderberg and Seamans [28] calculated the r,~ integrals according to 
the neglect of diatomic differential overlap (NDDO) [15] scheme, and 
consequently correction terms occurred in Eq. (4b). As far as we know, this 
generalized equation has not yet been applied in any actual optical activity 
calculation. 

In this paper according to the original concept of Linderberg, we are giving a 
modification of the (4b) formula when the ZDO hypothesis is dropped from Eq. 
(3). From this modification we expect better numerical results for those transitions 
which involve large contributions of one-center matrix elements. 

2. Method 

The matrix elements of the position operator are defined by the general second 
quantized form: 

~= 2 + (5) r ~ a  ,sa,,s 

s is the spin label, and the CNDO model Hamiltonian [29] is applied: 

I2I = E fl,~,,a+gsa~ ,, +�89 Y y,~,,~,~s~,,s + 
t1.,v,$ tx, P,S 

" ~  (6) 
A A 

tZ,S 

2 Note that the CNDO model is not the only possibility to combine with the Linderberg method. It is 
easy to show that the INDO [27] or the NDDO [15] Hamiltonians are also compatible with Eq. (4b). 
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According to (4a) the explicit calculation shows that the commutator of (5) and (6) 
gives: 

V~,.  = 5". (r , .~3~. - r~x3~,.) (7) 
A 

It may be noted that the electron repulsion part of (6) drops out from the [?,/-~r] 
commutator even in the NDDO case [30]. 

We propose this formula to calculate the gradient matrix elements in the magnetic 
and in the dipole velocity electric transition moments. In Eq. (7) not only the 3~,., 

# v off-diagonal resonance matrix elements occur, but also the 3ss and 3pp s- 
and p-type ionization potentials, respectively. Naturally, in the ZDO limit this 
equation reduces to Linderberg's one (4b). Note that we restrict ourselves to the 
case of the CNDO method, because of the special form of our model Hamiltonian 
(6). 

It may be argued that the use of the ZDO assumption is more consequent in a 
CNDO scheme, thus Eq. (4b) is to be preferred over Eq. (7). However, the 
undermentioned numerical examples will demonstrate that approximation (3), 
also in connection with the CNDO model is sometimes unreasonably rough, in 
particular in the case of the one-center matrix elements, which may have relatively 
large values. This fact justifies a procedure which uses ZDO for the calculation of 
the wave function but is a non-ZDO method for the evaluation of other physical 
parameters. 

It must be noted that in general Eq. (7) has an origin dependence. A change of 
origin (8) leads to a 8-dependence in V, , :  

v , . . (8 )  = [r, t~]~,. + 8IS,  t~] . .  

where S is the overlap matrix, which does not commute with the fl resonance 
integral matrix in finite basis. If we restrict us to the CNDO model, fl.~ = 
[(3 0 + 3~  than the last term reduces to 

0 0 0 0 
[S, 3]/.r v 3 b . - - / ~ a  $2  # b S 3 a [ a  2 

= 2 ( ) " "=  2 ~ , . + 2 S , ~ . + ( S , ~ . ) ]  

Eq. (7) has been derived by supposing that a + refers to a ZDO basis. Since we 
have kept r , . (~  # v) integrals, it may be also argued, that the basis set in question 
is not ZDO in fact. This may be visualized by applying a translation 8 of the 
coordinate system: 

r . . ( 8 )  = r ~ , . ( O ) + S S ~ .  

Since we use for r~.. an analytic procedure, this effect actually occurs. In order to 
compensate the origin dependence of V . .  in Eq. (7) one can use instead of Eq. (7) 
the following expression (Bicz6, private communication and [18]): 

V~,.  = 5~ [&,a ( S - 1 ) x ~ f l ~  - 3~,~ (S-1)~r~]  (7') 
ho" 
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Unfortunately, this formula is not consistent from another point of view: in case of 
CNDO wave functions we have a ZDO Hamiltonian for which S~,~ -- 0 (tz # u). 
The ZDO assumption and consequently Eq. (4b) leads automatically to trans- 
lationally invariant results. This violation is the cost we have to pay in order to get 
better numerical results by the abandoned ZDO assumption. 

For the matrix elements of the ~ x V operator, which is needed in Eqs. (1) and (2), 
we used the following formula: 

<b'](l~ X ,~)A. I/s = __ ,~, EA,a.~Sv O _1._ ( r  a X Vv,u.) A ( 8 )  
pea 

where e is the total antisymmetric unit tensor (the Levi-Civitta symbol), A = 1, 2, 
3 corresponds to the x, y, z components of the ~ x V vector operator, respectively. 
The/x, p and v labels denote AOs on atoms a and b, respectively. The/2,/5 orbital 
indices are 1, 2, 3 corresponding to the type of the AOs in the Px, Py and Pz order, 
respectively. If any of the/x or p AOs is s-type, the first term in Eq. (8) is absent. 
During the derivation of Eq. (8) we followed the same way as Linderberg and 
Michl [17] did, the only difference was that we did not approximate the S~ o 

overlap matrix with the 8~ o unit matrix, this approximation being consistent with 
the retention of the differential overlap in Eqs. (5) and (7). 

The use of Eq. (8) together with Eq. (7) leads to some consistency problem for the 
angular momentum operator [28], such as e.g. 1) the violation of the gauge- and 
translational invariance [28, 31] and 2) the fact that the (# x V),~ matrix is not 
antisymmetric through the ~ • V operator is anti-Hermitian. The first problem 
appears in magnetic field only, and it can be solved by use of London-type AOs 
[32-34]. The second problem is more essential, but we refer to a lot of direct 
rotatory strength calculations where Eq. (8) was applied [2, 11, 35, 36]. For 
instance, the analytic procedure [11], which was used to check our results, 
calculates the angular momentum integrals also by Eq. (8). Despite of this 
inconsistency we adopted Eq. (8) in order to have a basis of comparison with the 
analytic procedure. We note that numerical checks showed - 10% change in R 
while replacing (r x V),~ with - (r x V)~,. 

We have now an objection to the usual rotatory strength calculation using Eq. 
(4b). This formula is valid only together with the r , ~ - 6 , ~  approximation. 
However, in the calculations of the dipole length electric transition moments it is 
not customary to neglect for instance the (3st~13pz) type integrals, e.g. of a sulphur 
atom [17]. But then it is slightly inconsistent to use Eq. (4b) to calculate the 
magnetic or dipole velocity electric transition moments. This inconsistency prob- 
ably leads to an unreasonably large difference between the dipole velocity and 
dipole length rotatory strength values. 

3. Results 

The effect of the above described modification is demonstrated first on the 
numerical values of V ~  and (r • V).~ matrix elements over AOs for the twisted 
hydrogen peroxide (H202) model molecule (its geometry is given in Table 1). In 
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x y z (A) 

H1 -0.0795 -0.4734 0.8199 
H2 1.5545 0.9467 0 
Oa 0 0 0 
02 1.4750 0 0 

P. R. Surjfin and M. Kert~sz 

Table 1. Cartesian coordinates of atoms in 
H202 according to experimental data [38]: 
r(OH) = 0.96 ~, r(OO) = 1.475/k and the 
HOO bond angle is 94.8 ~ Here and in Table 2 
the dihedral angle is 120 ~ 

Table 2 there are one-center oxygen matrix elements, two-center oxygen- 
hydrogen and two-center oxygen-oxygen matrix elements, in three approxima- 
tions. The first one is the original Linderberg's, i.e. "full Z D O "  in r ~  (see Eq. (4b) 
for V,~); the second one is the present modification according to Eqs. (7) and (8) 
by means of the CNDO Hamiltonian of the molecule; and the last is the direct 
integration with Slater-type AOs (analytic), where the equation of motion plays 
no role. The modified values are obtained by the direct integration of the r,~s with 
Slater-orbitals [37]. 

Let us see first the gradient integrals. We have written down only the values 
significantly larger than zero. It seems that the "full Z D O "  approximation 
neglects the integrals in a few important cases (rows 1, 4, 10 and 12 in Table 2). In 
row 5 the "full Z D O "  result has the wrong sign. In some cases the values have the 
same sign and order of magnitude in all three approximations (rows 2, 3, 6, 7, 8, 9, 
11). However, sometimes the present modification changes the "full Z D O "  
values in the wrong direction (rows 2, 3, 6, 7). 

It is interesting that in the present method certain integrals e.g. (2sIV[2p~), etc. 
have no exactly fixed values (see rows 1, 10 and 12 in Table 2). This is a natural 
consequence of the fact that the computation of V,~ according to Eq. (7) is a 
"nonlocal" procedure: the V,~ value is determined by the molecule as a whole 
through certain/3x~ and certain r ~  integrals. In the case of the usual integration 
technique (i.e. the analytic way) the V ~  value depends only on the/x and v AOs. 
In the original Linderberg method this problem is avoided by use of the very 
simple form of Eq. (4b). 

The differences are more remarkable in the case of the r x V integrals (see rows 
13-17 in Table 2). We wrote down here also the matrix elements significantly 
larger than zero. It seems that the "full Z D O "  approximation keeps the trivial 
integrals (row 14) only, and the present modification gives results very similar to 
the analytic values. 

The change of the rotatory strength caused by the present modification is 
demonstrated first on the rotatory strength values of the first four lowest tran- 
sitions of hydrogen peroxide. For the rotatory strength of H202 no experimental 
data are available, and therefore the analytic method was chosen as a reference. 
The analytic rotatory strengths are calculated in dipole velocity form which is 
origin independent [8]. The present and the "full Z D O "  values are calculated in 
both (dipole velocity and dipole length) formalisms. The geometry of H202 was 
chosen according to experiment [38], except the dihedral angle aD which was 
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Table 2. One- and two-center ~ and r • ~ integrals for hydrogen and oxygen atoms 
in H202 molecule (the molecular geometry is shown in Table 1) 

approximation 

Integral type "full ZDO" present analytical 

one-center V 

1 ( 2 s ~ 2 , 0  0 0.38 0.66 
0.40 
0.43 
0.45 

two-center H1-O1 

~ (~4x 2s) o ~  o~3  -o~o 

3. ( i s  O 2S) 0.32 0.42 0.17 

4 (is ~ l ~ )  _0.0 0~1 02~ 

~ (1 ,~2~  0 _0~  o.09 0~2 

~ ( l s ~ 0  0 ~  0.~4 0 . ,  

0 2 7. ( l S ~ z  py) 0.22 0.24 0.17 

two-center O1-O2 V 

8. (2S~x 2s) 0.50 0.30 0.19 

9 ( 2 ~ )  0 ~  0 ~ 4  o 2 0  

~ o / ~ # <  o o o~ 007 
\ 0 y  / 0.06 

11. (2px ~x 2px) -0.70 -0.42 -0.18 

12. (2p~ ~- 2p~] 0 0.14 0.11 
\ Cl x / 0.16 

one-center r • V 02 
13. (2pz ](r x V) y 12s) 0 1.06 1.83 
14. (2pz I(r • V)YI[2px) 1.0 1.0 1.0 

two-center O1-H1 r • 
15. (2pyl(r xV)X[ls) 0 0.35 0.33 
16. (2pz](r x~)Xlls) 0 0.20 0.19 

two-center O2-O1 r • 
17. (2px [(r x V) yl2pz) 0 0.22 0.22 
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7,4 79 

_ ~ ~ ~ ~ ~ - ~  
~A 5,4 

-20 
Fig. 1. Correlation diagram for molecular orbitals of 
H20> The MO energies are in eV units. The orbitals 
are numbered in order of ascending energy and 
denoted by C2 point group symmetry 

varied in our calculations in the 0 ~ to 180 ~ range. Our wave function is a result of a 
C N D O / 2 - C I  calculation (the latter includes all the single excitations). 

In the case of the first and second lowest transitions neither the "full Z D O " ,  3 
nor the "modif ied" values are similar to the analytic rotatory strengths. The 
present  and the analytic results are opposite in sign, and the "full Z D O "  values are 
too small. The numerical analysis of matrix elements showed that the sign 
difference between the present  and analytical values is caused by the ~ 4 0 %  
difference between the present  and analytic one-center  gradient integrals (Table 
2, first row). These matrix elements have relatively large weight in the first and 
second lowest transitions. 

On Fig. 2 the rotatory strength of the first lowest (from 0 ~ to 90 ~ and second 
lowest (from 90 ~ to 180 ~ transitions of H202, in the above ment ioned three 
approximations, are given as a function of dihedral angle O~D. These two tran- 
sitions give a continuous curve because of the degeneracy and level crossing at 
about  90 ~ (see Fig. 1). Fig. 2 illustrates well the sign difference between the present  
and analytical values and that the "full Z D O "  rotatory strengths are too small. It 
seems that the present  dipole length and dipole velocity results are in very good 
agreement  with each other. 

The situation is more fortunate in the case of the third and fourth lowest 
transitions of H202 (Figs. 3 and 4). The sign of rotatory strengths is generally the 
same in all three approximations, and the curves are more  or less similar, however 
the numerical differences are not small. 

In the case of the transition shown in Fig. 3 (this corresponds to the 7A + 9B 
one-electron transition for ai~ < 90 ~ and to the 7B-~ 9B for O~D> 90~ see Fig. 1) 

a In the calculation of rotatory strength by the original Linderberg (ZDO) method we have neglected 
the differential overlap in the (/xl~ I v) electric transition moment integrals, as it is consistent with the use 
of Eq. (4b). 



Optical Rotatory Strength Calculation 

Fig, 2. Optical rotatory strengths in 10 -40 CGS units 
of first and second lowest transition of H202, by 
analytical (a), "full ZDO" (b) and present (c) 
methods in dipole velocity ( ..... ) and dipole 
length ( - - - - )  forms. The designation of transitions 
are shown in Fig. 1 

111 

i,0 . / /  

!~0 ,, / 

...... ~ _ ~  

the "full Z D O "  rotatory strengths are everywhere too small. The present  curves 
between the dihedral angles 90 ~ and 180 ~ are similar to the analytic one, but they 
are opposite in sign for angles less than 60 ~ . The local minimum at about  80 ~ and 
the maximum at about  40 ~ are the characteristics of all curves, but the large 
minimum at 15 ~ occurs only for the present  method.  

In the case of the 7A--> 10A for C~D < 90 ~ and 7B ~ 10A for aD > 90 ~ transitions 
(see Fig. 4) the present  modification shifts the "full Z D O "  curves towards the 
theoretical one. 

For the third and fourth lowest transitions the present  rotatory strengths in dipole 
length and dipole velocity forms do not agree as well as on Fig. 2, however  they are 
near to one another.  This may be a consequence of the fact that the transition 
energies of higher excitations are less accurate, and they appear  in the dipole 

ZA- ~'0 7B-gB 

Fig. 3. Rotatory strength curves of 7 ~ 9 transition of 
H202 in 10 -4o CGS units. Designations see in Fig. 2 

,~ - 5 Ii 

L 
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t ,'#5 7 , I  ~ I0A 7 g - -  tO,4 

x~ x - 10 

Fig. 4. Rotatory strengths of 7~ 10 transition of 
H202 in 10 -40 CGS units. Designations see in Fig. 2 

velocity ro ta tory  s t rength explicitly (see formula  (2)). Certainly,  the "full  Z D O "  
dipole velocity and  dipole length  values differ more  p ronounced ly  f rom each o ther  
than  those of the presen t  method .  

We  have m e n t i o n e d  in the In t roduc t ion  that  the equiva lence  of ro ta tory  s trengths 
(1) and  (2) require  exact wave funct ions  and  the validity of the He i senbe rg  

Table 3. Rotatory strengths, R, [10 .40 CGS] of first five lowest transition of H202 
calculated in dipole length (r) and in dipole velocity (V) formalisms. The molecular 
geometry is the same as in Table 1 

approximation 

Transition Form analytic "full ZDO" a b 

r -12.2 0.2 -18.7 -16.2 
1 V 17.7 0.3 -18.5 -15.5 

r 24.7 2.6 33.5 31.9 
2 V -13.7 2.2 33.0 33.9 

r -13.8 -5.2 -9.7 -5.7 
3 ~7 -12.7 -1.0 -7.1 -2.4 

r 3.6 -0.0 -3,1 -6.3 
4 ~r -0.8 +0.0 -3,1 -10.3 

5 r -18.3 -13.1 -22,7 -23.2 
V 3.7 -27.9 -34.7 -26.9 

a R values by use of Eq. (7) for ~7.~. 
b R values by use of Eq. (7') for ~7.~. 
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#H HA/ 
Fig. 5. 1,6 diazaspiro[4,4]nonane-2,7-dione 
molecule. 

equation of motion. This second condition is satisfied in all procedures using 
Linderberg's concept, thus also in the present method. This is not true for methods 
using the direct integration technique, hence the difference between the (1) and 
(2) rotatory strengths is much larger in the case of these methods (see Refs. [9, 
39-42], Table 3). Translational invariance is hurt by about 1% by using 1 
translation in case of V,~ calculated by Eq. (7). Application of the translationally 
invariant Eq. (7') leads to qualitatively similar results (see last column of Table 3). 
We note that even use of Eq. (7') in the dipole length formalism is nottranslation- 
ally invariant. 

Further on we demonstrate the effect of the present modification on a chemically 
more interesting larger molecule, 1,6-diazaspiro[4,4]nonane-2,7-dione (see Fig. 
5). The geometry was taken from experimental X-ray diffraction data [43]. 

The calculated excitation energies and rotatory strengths of the first five lowest 
transitions of this molecule are shown in Table 4. The wave function is a result of a 
CNDO/2-CI calculation. The CI basis set is built from the single excitations 
between molecular orbitals localized on the carbonyl chromophores. 

The present rotatory strengths (third row) are in qualitative agreement with the 
analytic (first row) values, and the "full ZDO"  results differs from these in 
particular at the second and fifth lowest transitions. The present dipole velocity 

Table 4. Excitation energies and rotatory strengths (10 -39 CGS) of the first five lowest 
transitions of 1,6 diazaspiro[4,4]nonane-2,7-dione molecule, using dipole length (r) and dipole 
velocity (V) formalisms 

Transition 1 2 3 4 5 

Calculated 

Observed 

R 

energy (eV) 6.63 6.64 11.24 11.74 12.08 

analytical V -8 .0  5.9 0.5 -1 .1  -2.1 

"full ZDO" r -1 .9  0.2 1.2 -2 .6  0.9 
V -2 .7  -1 .0  1.0 -1 .7  1.2 

present r -4 .7  3.3 2.2 -2 .8  -2 .0  
7 -7 .7  3.3 1.5 -1 .6  -4 .0  

R +3.9 
energy (eV) 6.4 
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and dipole length rotatory strengths have the same sign, the Linderberg's values at 
the second lowest transition are opposite in sign. 

According to the circular dichroism measurements the molecule has a transition 
of 6.4 eV with rotatory strength + 3.9 x 10 .39 CGN, the sign is unknown [44]. The 
theoretical calculations make the negative sign probable (see Table 4). 

4. Conclusion 

The present generalization of Linderberg's method gives more real numerical 
results because the applied approximations are less rough. It has not the inconsis- 
tency caused by the combination of the (4b) Linderberg equation and the 
retention the differential overlap in electric transition moment. Its numerical 
quality is illustrated well by Table 4. The rotatory strengths of the H2Oz molecule 
are more uncertain because this molecule is too small and simple and therefore 
some defective matrix elements have relatively large weights, leading to enlarged 
or incompensated errors. 

It appears as an important feature of the present method that it yields dipole 
length and dipole velocity rotatory strength values which are relatively close to 
one another. 
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